# Paper VI: Modern Physics (For Maths Combinations) V Semester

Work load: 60 hrs per semester 4 hrs/week

### UNIT-I (12 hrs)

## 1. Atomic and molecular physics

Introduction –Vector atom model and Stern-Gerlach experiment - quantum numbers associated with it. L-S and j- j coupling schemes.Zeeman effect and its experimental arrangement.

Raman effect, hypothesis, Stokes and Anti Stokes lines. Quantum theory of Raman effect. Experimental arrangement – Applications of Raman effect.

### UNIT-II (12 hrs)

# 2. Matter waves & Uncertainty Principle

Matter waves, de Broglie's hypothesis - wavelength of matter waves, Properties of matter waves - Davisson and Germer experiment – Phase and group velocities.

Heisenberg's uncertainty principle for position and momentum (x and p), & energy and time (E and t). Experimental verification

## UNIT-III (12 hrs)

# 3. Quantum (wave) mechanics

Basic postulates of quantum mechanics-Schrodinger time independent and time dependent wave equations-derivations. Physical interpretation of wave function. Eigen functions, Eigen values. Application of Schrodinger wave equation to particle in one dimensional infinite box.

#### UNIT-IV(12 hrs)

## 4. General Properties of Nuclei

Basic ideas of nucleus -size, mass, charge density (matter energy), binding energy, angular momentum, parity, magnetic moment, electric moments. Liquid drop model

## 5. Radioactivity decay:

Alpha decay: basics of  $\alpha$ -decay processes. Theory of  $\alpha$ -decay, Gamow's theory, Geiger Nuttal law. $\beta$ -decay, Energy kinematics for  $\beta$ -decay, positron emission, electron capture, neutrino hypothesis.

#### UNIT-V (12 hrs)

## 6. Crystal Structure

Amorphous and crystalline materials, unit cell, Miller indices, reciprocal lattice, types of lattices, diffraction of X-rays by crystals, Bragg's law.

#### 7. Superconductivity:

Introduction - experimental facts, critical temperature - critical field - Meissner effect - Isotope effect - Type I and type II superconductors - applications of superconductors.

#### REFERENCE BOOKS

- 1. BSc Physics, Vol.4, Telugu Akademy, Hyderabad
- 2. Molecular Structure and Spectroscopy by G. Aruldhas. Prentice Hall of India, New Delhi.

- 3. Modern Physics by R. Murugeshan and Kiruthiga Siva Prasath. S. Chand & Co.
- 4. Modern Physics by G. Aruldhas & P. Rajagopal. Eastern Economy Edition.
- 5. Concepts of Modern Physics by Arthur Beiser. Tata McGraw-Hill Edition.
- 6. Quantum Mechanics, Mahesh C Jain, Eastern Economy Edition.
- 7. Nuclear Physics, Irving Kaplan, Narosa publishing House.
- 8. Nuclear Physics, D.C. Tayal, Himalaya Publishing House.
- 9. Elements of Solid State Physics, J.P.Srivastava, Prentice Hall of India Pvt., Ltd.
- 10. Solid State Physics, A.J. Dekker, McMillan India.

## **Practical Paper VI: Modern Physics**

Work load: 30 hrs

2 hrs/week
Minimum of 6 experiments to be done and recorded

- 1. e/m of an electron by Thomson method.
- 2. Determination of Planck's Constant (photocell).
- 3. Verification of inverse square law of light using photovoltaic cell.
- 4. Study of absorption of  $\alpha$ -rays.
- 5. Study of absorption of  $\beta$ -rays.
- 6. Determination of Range of  $\beta$ -particles.
- 7. Determination of M & H.
- 8. Analysis of powder X-ray diffraction pattern to determine properties of crystals.
- 9. Energy gap of a semiconductor using junction diode.
- 10. Energy gap of a semiconductor using thermister.
- 11. A.C Impedance and power factor.
- 12. Half adder and full adder.
- 13. Carry Foster, s Bridge-Determination of specific resistance of a given wire.
- 14. Bridge rectifier-Filters.

Note: For all the above 8 practical papers the book "B.Sc Practical Physics" by C.L. Arora Published by S.Chand & Co, New – Delhi may be followed.

### **Scheme of Valuation**

| <b>Practical</b>                         | 50 marks |
|------------------------------------------|----------|
| Formula & Explanation                    | 6        |
| Tabular form +graph +circuit diagram     | 6        |
| Observations                             | 12       |
| Calculation, graph, precautions & Result | 6        |
| Viva-Voce                                | 10       |
| Record                                   | 10       |

## NOTE: Problems should be solved at the end of every chapter of all units.

### Suggested student activities

Student seminars, group discussions, assignments, field trips, study project and experimentation using virtual lab

## **Examples**

Seminars - A topic from any of the Units is given to the student and asked to give a

brief seminar presentation.

Group discussion - A topic from one of the units is given to a group of students and asked to

discuss and debate on it.

Assignment - Few problems may be given to the students from the different units and

asked them to solve.

Field trip - Visit to Satish Dhawan Space Centre, Sriharikota / Thermal and

#### **QUESTION BANK**

### **UNIT – 1(Atomic and molecular physics)**

#### Essay Questions(10M)

- 1. Describe Stern-Gerlach experiment with neat diagram and necessary theory.
- 2. Explain the quantum numbers associated with vector atom model.
- 3. What is Raman effect. Describe an experimental arrangement for the study of Raman effect.

## **Short Answers (5M)**

- 1. What are the drawbacks of Bohr atomic model?
- 2. Write a short note on Coupling schemes.
- 3. Write a short note on relativistic correction.
- 4. Explain the quantum theory of Raman effect.
- 5. What are the applications of Raman effect?

## **UNIT – 2(Quantum (wave) mechanics I)**

### Essay Questions(10M)

- 1. What are Matter waves? Explain de Broglie's hypothesis for matter waves. Derive expressions for wavelength of matter waves.
- 2. Describe Davisson and Germer experiment with a neat diagram and necessary theory.
- 3. Explain Heisenberg's uncertainty principle for position and momentum and extend it for energy and time.

#### **Short Answers (5M)**

- 1. What are the Properties of matter waves?
- 2. Describe γ ray microscope

## UNIT – 3(Quantum (wave) mechanics II)

#### **Essay Questions(10M)**

- 1. Write the basic postulates of quantum mechanics and derive Schrodinger time independent wave equation.
- 2. Write the Physical interpretation of wave function. Derive Schrodinger time dependent wave equation.
- 3. Apply Schrodinger wave equation to particle in one dimensional infinite box.

## **Short Answers (5M)**

1. Write the Physical interpretation of wave function.

#### UNIT-4

## Essay Questions(10M)

- 1. Explain the basic properties of nucleus
- 2. Explain the liquid drop model for nucleus. What are the drawbacks in this model. What are the drawbacks in this model?
- 3. What are magic numbers? How these are explained in shell model?
- 4. Explain Gamow's theory of  $\alpha$ -decay.

#### **Short Answers (5M)**

- 1. Write a short note on binding energy.
- 2. Write a short note on  $\beta$  decay.

#### **UNIT – 4(Nuclear Physics)**

## **Essay Questions(10M)**

- 1. Derive Bragg's law. Describe the construction and working of Bragg's spectrometer.
- 2. Describe Laue's method to determine the crystal structure.
- 3. Describe powder method to determine the crystal structure.
- 4. What is Meissner effect? Write about Type I and type II superconductors.

#### **Short Answers (5M)**

- 1. Write a short note on Miller indices.
- 2. What is isotopic effect on super conductivity.

3. What are the applications of super conductors.

6.explain the principle of transformer

## **UNIT-IV(Varying and Alternating currents)**

### **Essay Questions(10M)**

- 1. Derive an expression for the growth and decay of current in an inductance- resistance circuit.
- 2. discuss the nature of growth and decay of current in a capacitance –resistance circuit.
- 3.Discuss the growth and decay in a circuit containing resistance, inductance and capacitance when direct e.m.f is applied.

### **Short Answer (5M)**

- 1. Write a short note on power factor?
- 2. Write a short note on O-factor?
- 3. Discuss the growth of charge in C-R Circuit.
- 4. Write about the growth and decay of current in L-R Circuit.
- 5. Derive the decay of charge in L-C-R Circuit.
- 6. Calculate the impedance of L,C, and R in series of an A.C. circuit
- 7. What is electric resonance? Distinguish between series and parallel resonance.

### **UNIT-V(Maxwell's equations)**

## **Essay Questions(10M)**

- 1.write Maxwell's equations in differential and integral forms. Derive an expression for energy flow by electromagnetic waves
- 2.Describe Hertz experiment for the production and detection of electromagnetic waves
- 3. what is pointing vector? what is its significance?
- 4.write down maxwell's equation for electromagnetic fields and explain what each equation represents. Show that electromagnetic waves are transverse in nature.

### **Short Answer (5M)**

- 1.write down the Maxwell's equation in differential form.
- 2. what is meant by Poynting vector? Discuss the use in electromagnetic principles.
- 3. Show that electromagnetic waves are transverse in nature.

hydroelectric power stations / Science Centres, any other such visit etc.

Study project - Web based study of different satellites and applications.

# **Domain skills:**

Logical derivation, experimentation, problem solving, data collection and analysis, measurementskills